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We present the details of a lattice Boltzmann approach to phase separation in nonideal one- and two-
component fluids. The collision rules are chosen such that the equilibrium state corresponds to an input free
energy and the bulk flow is governed by the continuity, Navier-Stokes, and, for the binary fluid, a convection-
diffusion equation. Numerical results are compared to simple analytic predictions to confirm that the equilib-
rium state is indeed thermodynamically consistent and that the kinetics of the approach to equilibrium lie
within the expected universality classes. The approach is compared to other lattice Boltzmann simulations of
nonideal systems.@S1063-651X~96!03211-4#

PACS number~s!: 47.11.1j, 83.10.Lk, 05.70.Fh

I. INTRODUCTION

Our aim in this paper is to present the details of a lattice
Boltzmann approach to modeling phase separation and flow
in one- and two-component fluids. Possible applications of
the method are numerous, ranging from questions of purely
theoretical interest to those of industrial applicability. Ex-
amples include the effect of confinement and flow on phase
separation, multiphase flow in porous media, the dynamics
of complex fluids, and theoretical investigations of
Boltzmann-like approaches to phase separation and out-of-
equilibrium thermodynamics.

The lattice Boltzmann technique may arguably be classi-
fied as a mesoscopic approach to the simulation of fluid dy-
namics @1,2#. It is useful to consider it as lying between
molecular dynamics, which accesses microscopic length
scales, but as a result suffers from severe time constraints in
the investigation of hydrodynamics, and finite-difference so-
lutions of the Navier-Stokes equations, which contain no ob-
vious physical input.

The genesis of the approach lies in the application of cel-
lular automata to model fluid flow. In a seminal paper Frisch,
Hasslacher, and Pomeau@3# showed that a cellular automa-
ton model with collision rules that locally conserve mass and
momentum could be used to model the Navier-Stokes equa-
tions in the continuum limit. In practical applications of this
approach, however, fluctuations led to noisy data. Therefore
Higuera, Succi, and Benzi@4# introduced the lattice Boltz-
mann method, which can be considered as a coarse-grained
cellular automaton in which continuous distribution func-
tions at each lattice site replace the Boolean variables.

The lattice Boltzmann approach has been shown to give
convincing results for one-component flow@1#. It is particu-
larly useful for simulating flows in complex geometries be-
cause of the relative ease of implementing tortuous boundary
conditions~although care must be taken as to the detailed
effect of the boundaries on the flow@5#!. It has also been
applied to multiphase fluids with promising results for ques-
tions as diverse as the exponents associated with spinodal
decomposition@6–8# and the relative permeabilities for two-
phase flow in a porous medium as a function of the relative
densities of the two fluids@9#. However, the methods for
introducing phase separation have thus far been based upon

either a phenomenological rewriting of the collision rules
@10# or the introduction of an effective microscopic interac-
tion @11–13#. The drawback of these schemes is that the
system relaxes to an equilibrium state that cannnot be de-
scribed thermodynamically.

Therefore it is our aim here to describe a lattice Boltz-
mann approach that in equilibrium reaches a state that can be
associated with a free energy, corresponding pressure tensor,
and, for the binary fluid, chemical potential@14#. The tech-
nique has the added advantage that, given a simple choice of
input free energy, the properties of the steady state, such as
the coexistence curve and interface profiles, can be calcu-
lated analytically and compared to the results of the simula-
tions. Our approach is similar in spirit to the Cahn-Hilliard
theory of phase transitions in binary alloys@16#: the correct
choice of the collision rules ensures that the system evolves
towards the minimum of an input, nonlocal free-energy func-
tional. Macroscopic fluid flow is governed by the Navier-
Stokes equations.

We consider phase separation in both one-component or
liquid-gas systems and two-component or binary fluids. Evi-
dence is presented that the simulations reproduce the ex-
pected result that at short-time scales the kinetics of phase
separation lies in different universality classes corresponding
to nonconserved and conserved order parameters, respec-
tively @17#.

We hope that this approach will provide a useful step
towards the goal of defining a fully thermodynamically con-
sistent lattice Boltzmann method. The inclusion of the en-
ergy flow and the identification of anH theorem are still
needed to attain this goal. This point is discussed more fully
at the end of the paper.

The paper is organized as follows. In Sec. II we describe
a general framework by which lattice Boltzmann schemes
can be defined for a given set of microscopic conservation
laws. This is applied to a one-component fluid and a binary
fluid in Secs. III and V, respectively. Details of the deriva-
tions of the fluid equations of motion from the lattice Boltz-
mann collision rules are postponed to the Appendices. Re-
sults for each system as typified by a van der Waals fluid and
two ideal gases with a mutual interaction are presented in
Secs. IV and VI, respectively. Section VII aims to compare
the approach to modeling phase separation described here to
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other methods in the literature. Our conclusion, together with
a discussion of the successes and omissions of our approach,
conclude the paper.

II. GENERAL FRAMEWORK

The starting point for lattice Boltzmann simulations is the
evolution equation, discrete in space and time, for a set of
distribution functions$ f i% defined on a lattice of pointsxW @1#.
Each f i is associated with a lattice vectoreW i . Taking for
simplicity a single-time relaxation approximation@18#, the
evolution equation for a givenf i takes the form

f i~xW1eW iDt,t1Dt !2 f i~xW ,t !52
1

t
~ f i2 f i

0!, ~1!

whereDt is the time step andt the relaxation parameter.
f i
0 is an equilibrium distribution function, the choice of
which determines the physics inherent in the simulation.

Physical quantities are defined as moments off i . For ex-
ample,n5( i f i is a density andpa5( i f ieia is a momentum.
Subscriptsa,b, . . . will be used to represent Cartesian co-
ordinates and, as usual, a summation over repeated indices is
assumed.

The conservation laws that determine the physics are in-
troduced by choosingf i

0 such that the conserved moments of
f i are equal to the corresponding moments off i

0 . For ex-
ample, if pa5( i f i

0eia taking the first moment of Eq.~1!
indicates thatpa is a locally conserved quantity in the simu-
lation.

To obtain the continuum differential equations mimicked
by Eq. ~1! we Taylor expand the left-hand side to give

2
1

t
~ f i2 f i

0!5 (
k51

`
1

k!
Dtk~] t1eia]a!kf i , ~2!

for which Eq.~1! is the exact discretization.] t and]a denote
differentiation with respect tot and xa , respectively. This
equation can be solved recursively by the method of succes-
sive approximation. Retaining terms toO„(Dt)2…, Eq. ~2!
becomes

2
f i2 f i

0

tDt
5~] t1eia]a! f i

02~t21/2!Dt~] t
212eia] t]a

1eiaeib]a]b! f i
01O„~Dt !2…. ~3!

Taking moments of Eq.~3! with respect toeW i gives equa-
tions relating the time evolution of the moments off i to the
derivatives of the higher moments of the equilibrium distri-
bution function. By choosing a suitable definition for certain
higher moments off i

0 a given set of differential equations
describing the dynamics of the conserved quantities can be
simulated.

III. THE ONE-COMPONENT NONIDEAL FLUID

We first apply this approach to the flow of a one-
component, nonideal fluid@19#. The dynamics of the fluid
can be described by a single distribution function obeying
the lattice Boltzmann equation~1! @1,4#. The important

physical variables are the densityn and the fluid momentum
nuW , which are related to the distribution function by

n5(
i
f i , nua5(

i
f ieia . ~4!

Each of these quantities is locally conserved in any collision
process that forces the zeroth and first moments of the equi-
librium distribution function to take the form

(
i
f i
05n, (

i
f i
0eia5nua . ~5!

The higher moments off i
0 must be chosen such that the

resulting continuum equations correctly describe the hydro-
dynamics of a nonideal, one-component fluid. Defining the
second moment as

(
i
f i
0eiaeib5Pab1nuaub , ~6!

where Pab is the pressure tensor, leads to the continuity
equation for the fluid density

] tn1]a~nua!50 ~7!

and a Navier-Stokes level equation for the fluid momentum

] t~nub!1]a~nuaub!52]bp01]a~n]anub!

1]b~l~n!]anua!2S t2
1

2D
3
dp0
dn

Dt]a~ub]an1ua]bn!,

~8!

where the shear viscosityn and the bulk viscosityl are
given by

n5
2t21

8
~Dt !c2, l~n!5S t2

1

2DDtS c22 2
dp0
dn D . ~9!

The differential equations~7! and~8! follow from taking the
zeroth and first moments, respectively, of Eq.~3!, using the
conditions~5! and~6! and making additional approximations
about the relative sizes of certain terms. The final unusual
term must be included as density gradients may not be small
but in homogeneous regions the equation reduces to the clas-
sical, incompressible, Navier-Stokes equation. Details of the
calculation are given in Appendix A.

The thermodynamic aspects of the model enter through
the pressure tensorPab . Following the Cahn-Hilliard de-
scription of nonequilibrium dynamics@16#, we calculate this
function from theequilibrium free energy of the fluid mix-
ture. To test our approach it seems appropriate to choose a
simple and well-understood nonideal system, the van der
Waals fluid, for which the free-energy functional within a
gradient-squared approximation is@14#

C5E drWS c~T,n!1
k

2
~¹n!2D , ~10!
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wherec(T,n) is the bulk free-energy density at a tempera-
tureT

c~T,n!5nTlnS n

12nbD2an2 ~11!

and the second term gives the free-energy contribution from
density gradients in an inhomogeneous system. The pressure
tensor is related to the free energy in the usual way@15#

Pab~rW !5p~rW !dab1k
]n

]xa

]n

]xb
, ~12!

with

p~rW !5p02kn¹2n2
k

2
u¹W nu2, ~13!

where p05nc8(n)2c(n) is the equation of state of the
fluid.

Finally, to perform the simulation we need an explicit
expression forf i

0 . For simplicitly we shall work on a trian-
gular lattice taking six distribution functionsf i correspond-
ing to the nearest-neighbor lattice vectors
ei5c(61,0),c(61/2,6A3/2), which have the properties

(
i
eia50, (

i
eiaeib53c2dab ,

(
i
eiaeibeig50,

(
i
eiaeibeigeid5

3c4

4
~dabdgd1dgbdad1ddbdga!.

~14!

It will also be necessary to include a distribution function
f 0 for rest particles witheW050 in the simulation.
To satisfy the conditions on the first three moments of the

equilibrium distribution function@Eqs. ~5! and ~6!#, an ex-
pansion of thef i

0 to second order inuW is sufficient. We write

f i
05A1Buaeia1Cu21Duaubeiaeib1Gabeiaeib

~15!

and for the rest particles

f 0
05A01C0u

2, ~16!

where the coefficientsA,A0 ,B, . . . in the expansions de-
pend onn and its derivatives. Using the relations~14!, a
suitable choice of coefficients is

A05n26A, A5~p02kn¹2n!/3c2,

B5n/3c2, C52n/6c2,

C052n/c2, D52n/3c4,

Gxx52Gyy5
k

3c4 H S ]n

]xD
2

2S ]n

]yD
2J ,

Gxy5
2

3c4
k

]n

]x

]n

]y
. ~17!

Examples of the choices of finite-difference approximations
used to calculate the derivatives~which will affect correction
terms in the simulations! are

]an'
1

3cDx(i n~rW1eW iDt !eia , ~18!

¹2n'
2

3~Dx!2 F(i n~rW1eW iDt !26n~rW !G . ~19!

All the parameters are now in place to allow a numerical
simulation of the lattice Boltzmann equation~1!. This proce-
dure in normally described in terms of two steps. The first of
these is the collision step where eachf i relaxes tof i

0 at a rate
governed byt. The second is a moving step where each
f i(xW ) is moved tof i(xW1eW i).
The explicit spatial discretizationDx in Eqs.~18! and~19!

can be absorbed into the definition ofk. There are thus three
free parametersc,k, and t that control the temporal and
spatial scaling and the viscosity. By monitoring the growth
of density variations, we have verified numerically that the
scaling implied by Eqs.~8!, ~9!, ~12!, and ~13! holds for a
wide range of control parameters.

IV. RESULTS FOR THE ONE-COMPONENT FLUID

We now present results for the one-component fluid. We
confirm that the fluid behaves as expected in equilibrium,
explore the universality class of the kinetics, but demonstrate
that there are problems with Galilean invariance. Figure 1
shows the coexistence curve fora 5 9/49 andb52/21, cor-
responding to a critical densitync57/2 and a critical tem-

FIG. 1. Coexistence curve, temperatureT versus densityn for
the van der Waals fluid. In the free energy~11! a59/49 and
b52/21 corresponding to a critical densitync57/2 and a critical
temperaturekTc54/7. The solid line is the analytic result.
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peratureTc54/7. The points were obtained by equilibrating
a flat interface between the liquid and gas phases for differ-
ent temperatures and observing the maximum and minimum
densities. Typically simulations were carried out on lattices
of size 1283128 and allowed to equilibriate for 104 time
steps. The line is the analytic result obtained from a Maxwell
construction for the free energy~11!. Good agreement is ob-
tained over a wide range of density differences.

To demonstrate the extent to which the correct interfacial
profile is reproduced, a planar interface, parallel to a lattice
axis, was set up by relaxing a periodic density variation for
;104 time steps. Figure 2~a! shows how the shape of the
equilibrated interface varies withT. The solid lines are es-
sentially exact numerical solutions for the interface profile of
the continuum model described by the nonlocal free energy
~10! and the data points represent the densities obtained from
lattice Boltzmann simulations at lattice sites through the in-
terface. Simulation parameters are given in the caption to
Fig. 2. To provide a more transparent demonstration of the
accuracy of the results the density difference between the
lattice Boltzmann and continuum solutions is plotted in Fig.
2~b!. Errors, which are a consequence of the discreteness of
space and time, are less than 1%, becoming, as expected,
larger as the interface becomes sharper. We note that inter-
faces of width;2 lattice spacings can be obtained. Such
narrow interfaces are useful in numerical simulations of, for
example, domain growth where several domains are needed
to give good statistics on a lattice of limited size.

To check the isotropy of the interface with respect to the
lattice, circular droplets of diameters;20 and;30 lattice
spacings were equilibriated for 104 time steps. The density
was plotted as a function of the distance from the center of
mass of the drops for all lattice points. The results, shown in

Fig. 3, show no obvious anisotropy, which would be marked
by some data points falling on different curves.

One of the problems experienced by both lattice Boltz-
mann and finite-difference simulations of interfaces is the
existence of spurious, nonzero velocities in the interface re-
gion even in equilibrium. For the scheme described here they
are zero for an interface parallel to a lattice direction, a for-
tuitous consequence of the imposition of the Maxwell con-
struction. However, spurious velocities do exist for interfaces
in other directions.

Evidence that these velocities are due to the finite space
and time steps inherent in the simulation is presented in Fig.
4. This displays the maximum magnitude of the spurious
velocity across the interface of an equilibrated circular drop-
let as a function of the relaxation parametert. There is a
pronounced minimum close to the valuet*5(111/A3)/2,
where termsO„(Dt)2… in the expansion~3! vanish. Note also
that ask is reduced and the interface becomes sharper the
spurious velocities become greater as expected. A more de-
tailed discussion of the dependence of the spurious velocities
on the model parameters and a comparison of their magni-
tudes to those obtained in other lattice Boltzmann schemes
for phase separation will be given elsewhere@20#.

A useful check that the kinetics of the lattice Boltzmann
scheme, that is, the way in which the system approaches
equilibrium, lies within the expected universality class is
provided by the rate of decay of an equilibrated interface
@21,17#. An equilibrium interface was set up for an initial
temperatureTi,Tc , whereTc is the critical temperature and
the decay of the nonequilibrium surface tension

s}E S ]n

]zD
2

dz, ~20!

wherez is the coordinate perpendicular to the interface, was

FIG. 2. ~a! Equilibrium density profiles normal to a flat interface
for a van der Waals fluid.n is the density andz the position on the
lattice measured normal to the interface. The parameter values are
a59/49,b52/21,k50.01, andT50.55,0.56, and 0.57. The solid
lines are numerical solutions of the continuum thermodynamic
equations.~b! Difference between the results of the lattice Boltz-
mann simulations (nL) and those~essentially exact! for the con-
tinuum model (nC).

FIG. 3. Densityn of equilibrated droplets plotted as the distance
from the center of mass of the dropletr2r c.m.. The points lie on a
single curve for each droplet, showing that any anisotropy in the
droplet shape is very small. These simulations were run for
a59/49,b52/21, andk50.01.
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measured following an instantaneous quench to final tem-
peraturesTf5Tc or Tf.Tc . The results are

s;t23/2, Tf5Tc ; s;e2t, Tf.Tc , ~21!

consistent with the modelA dynamics expected for a system
with a nonconserved order parameter.

These values follow from a scaling argument. From the
definition ~20!, s;n0

2/L, whereL is the interface width and
n0 the value of the density far from the interface. For model
A dynamics L;t1/2,Tf>Tc . For very early timesn0
; const, but these times are not accessible to the simulation.
For later timesn0;t21/2,T5Tc andn0;e2t,T.Tc , leading
to the results~21!. An important feature of these results is
that they show that the lattice Boltzmann scheme described
here gives sensible kinetics for temperaturesT>Tc as well
as in the two-phase region.

We note that for later times hydrodynamic modes are ex-
pected to change the universality class of the fluid kinetics.
These are not seen in a consideration of interface decay, but
their effects have been observed in a simulation of domain
growth @6#.

In systems that phase separate, significant density gradi-
ents are created and this leads to measurable non-Galilean-
invariant effects in the simulations. Note that the viscous
terms in the Navier-Stokes equation~8! contain functions of
the density within the first derivative and hence are not Gal-
ilean invariant.

To demonstrate the effect of the lack of Galilean invari-
ance a circular droplet was brought to equilibrium and then a
constant velocityuW was imposed on the system. The droplet
quickly came to rest.

A partial improvement follows if additional terms

v1~ub]an1ua]bn!1v2ug]gdab ~22!

are added to the pressure tensor~6!. By appropriate choice of
v1 and v2 it is possible to remove some of the Galilean-
invariant terms, but not all, as discussed in Appendix A. A
moving droplet then deforms to a new equilibrium shape, an
ellipse, with the ratio of the lengths of the minor and major
axes decreasing with increasing flow velocity as shown in
Fig. 5. An unphysical step in the velocity is seen across the
interface.

V. A LATTICE BOLTZMANN SCHEME
FOR BINARY FLUIDS

Our aim in this section is to describe how the lattice Boltz-
mann approach can be extended to describe the dynamics of
binary fluids @22#. The main difference from the one-
component case is that, as there are now two independent
densities, two sets of lattice Boltzmann distribution functions
$ f i% and$gi% are now needed to correctly mirror the dynam-
ics of the conserved quantities. These are taken to evolve
according to the usual single relaxation-time lattice Boltz-
mann equation@see~1!#@18#

f i~xW1eW iDt,t1Dt !2 f i~xW ,t !52
1

t1
~ f i2 f i

0!, ~23!

gi~xW1eW iDt,t1Dt !2gi~xW ,t !52
1

t2
~gi2gi

0!. ~24!

A convenient choice of physical variables is the total fluid
densityn, the mean fluid velocityuW , and the density differ-
ence between the two fluid componentsDn5n12n2, where

FIG. 4. Dependence of the spurious interface velocity on the
relaxation parametert. There is a minimum neart* where terms
O@(Dt)2# in expansion~3! vanish.umax is the maximum value of
the interface velocity for a circular equilibrated droplet. Results
were obtained fora59/49, b52/21, k50.01 ~triangles!, and
k50.02 ~squares! coresponding to interfaces of widths;5 and
;8 lattice spacings, respectively.

FIG. 5. Equilibrium droplet shape for a system moving with

constant velocityuW along a lattice direction. The droplet is elliptical
and the ratio of the lengths of the minor to the major axer' /r i is
plotted. Results for the one-component fluid~squares! show large
deviations from circular, resulting from a lack of Galilean invari-
ance. For the binary fluid (3) the droplet remains circular, showing
that the system is very close to Galilean invariant.
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n1 andn2 are the individual component densities. The physi-
cal variables are related to the distribution functions by

n5(
i
f i , nua5(

i
f ieia , ~25!

Dn5(
i
gi . ~26!

These three quantities are locally conserved in any collision
giving three constraints on the equilibrium distribution func-
tions

(
i
f i
05n, (

i
f i
0eia5nua , ~27!

(
i
gi
05Dn. ~28!

The higher moments off i
0 and gi

0 are defined so that the
resulting continuum equations describe the dynamics of a
binary liquid mixture. A suitable choice is

(
i
f i
0eiaeib5Pab1nuaub , ~29!

(
i
gi
0eia5Dnua , ~30!

(
i
gi
0eiaeib5GDmdab1Dnuaub , ~31!

wherePab is the pressure tensor,Dm is the chemical poten-
tial difference between the two components, andG is a mo-
bility.

This leadsO„(Dt)2… to the continuity equation for the
total density

] tn1]a~nua!50, ~32!

the Navier-Stokes equation for the mean fluid momentum

] t~nub!1]a~nuaub!52]bp01n¹2~nub!

1]b$l~n!]a~nua!%, ~33!

and a convection-diffusion equation for the density differ-
ence

] tDn1]a~Dnua!5Gu¹2Dm2u]aS Dn

n
]bPabD . ~34!

The parameters in these equations are given by

u5~Dt !~t221/2!, n5
~2t121!

8
~Dt !c2,

l~n!5S t12
1

2DDtS c22 2
dp0
dn D . ~35!

Their derivation from the expansion~3! is detailed in Appen-
dix B.

Following the route for the one-component fluid in Sec.
II, we now describe the thermodynamic aspects of the model
that here are manifest through bothPab andDm. We choose
the simplest model of a binary liquid: two ideal gases with a
repulsive interaction energy that corresponds to the free-
energy functional

C5E drWS c~T,n,Dn!1
k

2
~¹n!21

k

2
~¹Dn!2D . ~36!

The bulk free-energy density at a temperatureT is

c~Dn,n,T!5
l

4
nS 12

Dn2

n2 D2Tn1
T

2
~n1Dn!lnS n1Dn

2 D
1
T

2
~n2Dn!lnS n2Dn

2 D , ~37!

where l measures the strength of the interaction. For
T,Tc5

1
2l the bulk system phase separates into one of two

phases, with density differences6Dn. The chemical poten-
tial difference and pressure tensor follow from the free en-
ergy in the usual way@23#,

Dm~Dn,n,T!52
l

2

Dn

n
1
T

2
lnS 11Dn/n

12Dn/nD2k¹2~Dn!,

~38!

Pab~rW !5p~rW !dab1k
]n

]xa

]n

]xb
1k

]Dn

]xa

]Dn

]xb
, ~39!

where

p~rW !5nT2k~n¹2n1Dn¹2Dn!2
k

2
~ u¹nu21u¹Dnu2!.

~40!

Finally, we present explicit expressions forf i
0 and gi

0 .
Working, as for the one-component fluid, on a triangular
lattice, we define

f i
05A1Buaeia1Cu21Duaubeiaeib1Gabeiaeib ,

~41!

f 0
05A01C0u

2, ~42!

gi
05H1Kuaeia1Ju21Quaubeiaeib , ~43!

g0
05H01J0u

2. ~44!

A suitable choice of the coefficients in these expansions,
consistent with Eqs.~27!–~31!, is

A05n26A, A5~p02kDn¹2Dn2kn¹2n!3c2,

B5n/3c2, C52n/6c2, C052n/c2, D52n/3c4,

Gxx52Gyy5
k

3c4 H S ]n

]xD
2

2S ]n

]yD
2J

1
k

3c4 H S ]Dn

]x D 22S ]Dn

]y D 2J ,
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Gxy5
2

3c4
kF]n]x

]n

]y
1

]Dn

]x

]Dn

]y G ,
H05Dn26H, H5

GDm

3c2
, K5

Dn

3c2
, J52

Dn

6c2
,

J052Dn/c2, Q5
2Dn

3c4
. ~45!

VI. RESULTS FOR A BINARY FLUID

Here we detail the results of simulations on the binary
fluid mixture. To check that the expected equilibrium is ob-
tained we measured the coexistence curve forl51.1 corre-
sponding tokTc50.55. The results, typically obtained from
runs on lattices of size 1283128 equilibrated for 53104

time steps, are shown in Fig. 6. The exact coexistence curve,
which can be calculated from the free energy~37!, is given
for comparison. Similar measurements taken when the sys-
tem was moving at a constant velocity, which provide a
check on the Galilean invariance of the model, are also
shown and will be discussed below.

The profiles of a flat interface parallel to a lattice axis for
the same value ofl and different temperatures are displayed
in Fig. 7~a!. Figure 7~b! shows the deviations of the density
profiles from the exact continuum results, which follow from
the nonlocal free energy~36!. These results suggest that dis-
creteness errors in the simulations;1–2%. Figure 7~c!
shows the total density across the interface, which is ap-
proximately constant.

Another important check concerns the isotropy of the in-
terface profile with respect to the lattice. Circular domains of

the phase withDn.0 within the phase withDn,0 were
brought to equilibrium. Figure 8 displaysDn at all lattice
points as a function of the distance from the point at which
the first moment ofDn is zero for each droplet. There is no
evidence that any data points lie on different curves, thus
showing that the droplets are at least very close to isotropic.

FIG. 6. Coexistence curve, the relation between the density dif-
ference between the two phasesDn and the temperatureT, for the
binary fluid defined by the equation of state~37! for l51.1 corre-
sponding toTC50.55. Different symbols denote simulations run at

different uniform fluid velocities:uW 50.0 ~filled squares!, uW 50.1

~triangles!, uW 50.2 ~hexagons!. The solid line is the exact result.

FIG. 7. ~a! Equilibrium density profiles normal to a flat interface
for the binary fluid defined by the free energy~10! with l51.1.
Dn is the density difference between the two phases andz the
position on the lattice measured normal to the interface. Results are
given for k50.01 andT50.498, 0.511, and 0.526.~b! Difference
between the results of the lattice Boltzmann simulations (nL) and
exact results for the continuum model (nC). ~c! Variation of the
densityn across the interface.

FIG. 8. Order parameterDn of equilibrated droplets plotted as
the distance from the center of mass of the dropletr2r c.m.. The
points lie on a single curve for each droplet showing that any an-
isotropy in the droplet shape is very small. These simulations were
run for l51.1,k50.2, andT50.5.
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Just as for the one-component fluid, discreteness errors in
the simulation lead to spurious velocities in equilibrium in
the interface region for the binary fluid. An example of these
is plotted in Fig. 9. Again, there is a pronounced minimum
neart15t* where termsO„(Dt)2… disappear from the ex-
pansion~3!. For a flat interface parallel to a lattice axis there
are no spurious velocities.

It is interesting to compare results for the decay of an
equilibrated interface following an instantaneous increase in
temperature toTf5Tc or Tf.Tc to those for a one-
component fluid@21#. They are expected to differ because
the binary fluid has a conserved order parameter. This means
that it lies in the modelB universality class in the regime
when hydrodynamics is unimportant@17#.

The nonequilibrium surface tension

s}E S ]~Dn!

]z D 2dz ~46!

was measured and was found to decay with time as

s;t21/4, Tf5Tc ; s;t21/2, Tf.Tc . ~47!

These results should be compared to those for the liquid gas
system~21!.

The values are again in agreement with a simple scaling
argument. From~46! s;(Dn0)

2/L, whereL is the interface
width andDn0 the value of the density difference far from
the interface. For modelB dynamicsDn0;const; L;t1/2,
T.Tc ; and L;t1/4, T5Tc , leading immediately to~47!.
This provides a very clean and simple numerical test that our
model does indeed lie within the modelB universality class.

The lack of Galilean invariance for the one-component
fluid does not occur for the binary fluid simulations. This is
because, in the latter case, the density is essentially constant

throughout the fluid. To demonstrate this the coexistence
curve was measured for systems moving at a constant bulk
velocity. The results, plotted in Fig. 6, show no velocity
dependence. A second set of results, which highlights the
difference between the one- and two-component fluids is
shown in Fig. 5. The deformation of an originally circular
droplet in a fluid moving with constant velocity seen in the
former case does not occur for the latter. However, we note
that the problem will reappear if the two components of the
binary fluid have different masses@24#.

VII. COMPARISON TO OTHER LATTICE BOLTZMANN
SCHEMES OF PHASE SEPARATION

We now compare our approach to other lattice Boltzmann
schemes for phase separation appearing in the literature. A
scheme for modeling immiscible binary mixtures, which has
been widely used, was introduced for cellular automata by
Rothman and Keller@25# and extended to the lattice Boltz-
mann framework by Gunstensenet al. @10#. The Gunstensen
et al. scheme induces phase separation by a phenomenologi-
cal rewriting of the collision rules. It can be described within
the framework of a Bhatnagar-Gross-Krook approximation
@18# in two steps.

In the first step the distribution function for the total den-
sity $ f i% is updated as usual@Eq. ~23!# but with an equilib-
rium distribution f i

0 corresponding to an ideal gas. A color
gradient is then defined at each node

qa~rW !5(
i
eia$nr~rW1eW i !2nb~rW1eW i !%'3c2]aDn,

~48!

wherenr5(n1Dn)/2 andnb5(n2Dn)/2 are the densities
of the two species. An extra term

b1uqW ucos2f i , ~49!

where

cosf i5
qW •eW i

uqW uueW i u
~50!

is added to$ f i%.
Writing

cos2f i52cos2f i2152
qaqbeiaeib

uqW u2c2
21, ~51!

it is apparent that the initial updating, together with the ad-
dition of the extra term~49!, is equivalent to a single updat-
ing, but with a redefined equilibrium distribution function

f̄ i
05Ā1Beiaua1Cu21Duaubeiaeib1Ḡabeiaeib .

~52!

The coefficientsB,C,D ~and those appearing inf 0
0) are iden-

tical to those defined in Eq.~45!. However, differences ap-
pear in

FIG. 9. Dependence of the spurious interface velocity on the
relaxation parametert. There is a minimum neart* where terms
O„(Dt)2… in the expansion~3! vanish.umax is the maximum value
of the interface velocity for a circular equilibrated droplet. Results
were obtained forl51.1,k50.2, andT50.5 corresponding to an
interface of width;5 lattice spacings.
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Ā5n/32b1tuqW u,

Ḡxx5
2b1t

c2uqW u
qx
2 , Ḡyy5

2b1t

c2uqW u
qy
2 , Ḡxy5

2b1t

c2uqW u
qxqy .

~53!

These coefficients correspond to the definitions of the mo-
ments off i

0 given in equations~27! and ~29! if the pressure
tensor is taken to be

P̄ab5 p̄~rW !dab1
3b1

uqW u
tc2~3c2!2]a~Dn!]b~Dn!, ~54!

where

p̄~rW !5~n2 3
2b1tuqW u!c2. ~55!

This form for the pressure tensor should be compared to Eqs.
~39! and~40!. The important term that gives rise to an energy
associated with density gradients and hence to a surface ten-
sion k̄53b1(3c

2)2tc2/uqW u is included in the Gunstensen
et al. approach, but the lack of¹2Dn terms in the diagonal
part of the pressure tensor indicates that there is no consis-
tency with a free-energy functional.

In the second step of the Gunstensenet al. approach@10#
the two densitiesnr andnb are redistributed so as to preserve
a sharp interface. The prescription for this is to maximize the
scalar product of the color gradient@Eq. ~48!# and the color
flux ( igieW i at a site with the constraints that thef i and the
total densities of the two species remain constant.

The maximization step is carried out numerically preclud-
ing an analytic comparison to the approach described here.
However, its effect is to leave(gi

05Dn, as in Eq.~28!, but
to introduce complicated additional terms into both(gi

0eia
and (gi

0eiaeib , which presumably mimic the effect of the
chemical potential. In the Gunstensenet al. approach the in-
terfaces are sharp, but this appears not to affect the kinetics
of domain growth@26#. An extension of the method that
allows a phenomenological parameter that can be used to
tune the interface width has been proposed by D’Ortona
et al. @27#.

A different approach to the introduction of phase separa-
tion has been proposed by Shan and Chen@11,12#. These
authors base their development on the assumption that phase
separation is driven by microscopic interactions between the
lattice Boltzmann sites. The effect of the interactions is to
introduce an additionalmomentumchange at each iteration
of the recursion equations.

Hence, for one-component fluids, the equation~5! for the
first moment of the equilibrium distribution function is re-
placed by

( f i
0eia5nua2tGc~xW !(

i
c~xW1eW i !eia , ~56!

whereG measures the strength of the interaction andc is a
function of the densityn. The second moment of the equi-
librium distribution function is taken as equal to the pressure
of an ideal gas, together with a streaming term@compare Eq.
~6!#.

These definitions for the moments off 0 lead, in the usual
way ~see Appendix A!, to a continuity equation, but with a
spurious diffusive term

] tn1]anua5
3Gc2

2
¹2c, ~57!

and to the Navier-Stokes equation with a nonideal equation
of state

p05
c2

2 F ~12d0!n

6
13Gc2~n!G , ~58!

where d0 is a constant. Hence the system spontaneously
phase separates with2(12d0)/G behaving in a way akin to
temperature.

The primary drawback of this approach is that the equi-
librium state is not thermodynamically consistent and has no
underlying free energy. This means that, in general, calcula-
tions of the properties of the system, for example, the surface
tension, using a mechanic approach~i.e., from the pressure
tensor! or a thermodynamic approach~i.e., from a Maxwell
construction on the equation of state! are inconsistent. It
would be interesting to ascertain whether this approach gives
the correct kinetics for the approach to equilibrium by, say,
following the decay of an interface equilibrated belowTc as
the temperature is raised to>Tc or whether the additional
diffusive term in the continuity equation drives a crossover
to a different universality class.

Shan and Doolen@13# have more recently given a detailed
account of the application of this approach to miscible binary
fluids. There is an extra momentum exchange between the
components, introduced as an extra term in the definition of
the first moment of the equilibrium distribution function Eq.
~30!. Given care in the identification of the macroscopic fluid
velocity this leads to convection-diffusion equations for each
component. The diffusion is driven by the difference in the
fluid densities from their equilibrium values and the diffu-
sion coefficients are a complicated function of the fluid con-
centrations and the parameters appearing in the interaction
terms.

We emphasize that in the approach described in this paper
phase separation is driven by terms in the second moments
of the equilibrium distribution functions, whereas in the
Shan-Chen-Doolen method the additional terms appear in the
first moments. Although one might argue that considering
microscopic interactions naturally leads to momentum
changes it is far from obvious that the lattice Boltzmann sites
should be viewed as microscopic entities. Regarding the
simulation as mesoscopic, the effect of interactions are more
physically input as corrections to thermodynamic variables
such as the pressure tensor. This approach has the advantage
of no spurious diffusion term in the equation for one-
component flow, a thermodynamically consistent equilib-
rium state, and a much simpler diffusion equation for binary
flow.

As far as we are aware the only other scheme in the lit-
erature that relies on corrections to the second moment of the
distribution function is a lattice Boltzmann scheme for mis-
cible fluids due to Flekko”y @28#. The main difference be-
tween his approach and that presented here is that Eq.~31!,
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which defines the second moment of the distribution function
for the density difference, is replaced by

(
i
gi
0eiaeib5Dndab/2. ~59!

This, together with the assumptions thatPab5 1
2ndab and

that the density is constant, leads to a diffusion equation
~rewritten in the notation of this paper!

] tDn1ua]aDn5~t21/2!Dt$¹2Dn/22uaub]a]bDn%.
~60!

A difference between this and equation~34! is the appear-
ance of the non-Galilean-invariant term on the right-hand
side of ~60!. This gives a velocity dependence to the diffu-
sion coefficient that can be removed by addingDnuaub to
the right-hand side of the definition~59!. A more physical
difference is that the diffusion is driven by the density dif-
ferenceDn rather than the chemical potential difference
Dm. Hence the simulation will be unstable in the immiscible
regime.

VIII. DISCUSSION

In this paper we have described a lattice Boltzmann
scheme for the simulation of phase separation and flow in
one- and two-component fluids. The main different feature of
the approach is that in equilibrium the system is described by
a chosen free energy. Hence mechanical and thermodynamic
calculations of physical properties are, by construction, con-
sistent in the steady state. The approach to equilibrium is
governed by the input free energy in a way similar in spirit to
the Cahn-Hillard approach to phase separation in binary al-
loys. Bulk flow properties are described by the continuity
and Navier-Stokes equations. For the binary fluid there is
also a convection-diffusion equation for the density differ-
ence with the diffusion being controlled by the chemical po-
tential difference between the two components.

Numerical results for the coexistence curve and interface
profiles were shown to be in excellent agreement with the
analytic calculations. Evidence presented here and elsewhere
@6# indicates that the kinetics of phase separation at early
times lies within the modelA universality class for the one-
component fluid for which the order parameter is not con-
served and the modelB universality class for the two-
component fluid where it is. Moreover, the scheme has
sensible kinetics above and at, as well as below, the critical
temperature.

A problem is the lack of Galilean invariance, which oc-
curs for the liquid-gas system because of variations in the
density that appear inside derivatives in the Navier-Stokes
equation. Although this can be alleviated by including addi-
tional terms in the pressure tensor Eq.~6!, it cannot be re-
moved. The continuum Boltzmann equation is, of course,
Galilean invariant, and the invariance is lost in going to the
lattice version. More work is needed to understand and over-
come this shortcoming.

Still missing from the approach is a correct treatment of
the flow of energy: a macroscopic differential equation de-
scribing energy conservation is needed. Although such an
equation has been included in a lattice Boltzmann scheme for

an ideal gas@29# it is far from obvious how to treat potential
energy correctly. Moreover, on a microscopic level, anH
theorem must be identified before a fully thermodynamically
consistent scheme is possible. Perhaps one should emphasize
that the Navier-Stokes equations themselves contain only the
equation of state and are reproduced by virtually any method
of driving phase separation that conserves momentum. The
actual equilibrium obtained is determined by higher-order
corrections in the simulation. A corollary is that to get en-
ergy flow correct, it will not only be necessary to simulate
the correct macroscopic conservation equations but also to
introduce the correct relations between the microscopic ther-
modynamic properties.

Another interesting direction for future research is the re-
lationship between lattice Boltzmann and finite-difference
approaches to the solution of the Navier-Stokes equations.
That the two schemes are intimately related was pointed out
by Ancona@30#. Recently Nadiga and Zaleski@31# have in-
troduced the correct nonideal pressure tensor into a finite-
difference simulation of the Navier-Stokes equations ensur-
ing that a thermodynamically consistent equilibrium is
obtained.
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APPENDIX A

Our aim is to show how the continuity and Navier-Stokes
equations for a one-component fluid follow from the single
relaxation time lattice Boltzmann approximation Eq.~1!. Our
starting point is Eq.~3!.

Summing both sides of Eq.~3! over i and using Eqs.~4!
and ~5! gives

05] tn1]a~nua!2~t21/2!DtH ] t
2n12]a] t~nua!

1]a]b(
i
f i
0eiaeibJ 1O„~Dt !2…. ~A1!

Multiplying Eq. ~3! by eib and summing overi gives

05] t~nub!1]a(
i
f i
0eiaeib

2~t21/2!DtH ] t
2~nub!12] t]a(

i
f i
0eiaeib

1]a]g(
i
f i
0eiaeibeigJ 1O„~Dt !2…. ~A2!

From Eqs.~A1! and ~A2!, respectively,

] tn52]a~nua!1O~Dt !, ~A3!

] t~nub!52]a(
i
f i
0eiaeib1O~Dt !. ~A4!
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Substituting these expressions into the curly brackets in Eq.
~A1! shows that this term vanishes to this order and we are
left with the continuity equation~7!.

Similarly using Eq.~A4! shows that the first, together
with half of the second, term in the curly brackets in Eq.
~A2! can be neglected as higher order. We consider the re-
maining terms in~A2! in turn.

~i! Using the definition of the second moment off i
0 , Eq.

~6!

]a(
i
f i
0eiaeib5]aPab1]a~nuaub!']bp01]a~nuaub!

~A5!

using ~12! and neglecting higher-order derivatives.
~ii ! Similarly,

] t]a(
i
f i
0eiaeib5] t]a~Pab1nuaub!

']a] tp01]a@ua] t~nub!1nub] tua#

'2]b

dp0
dn

]g~nug!

2]a~ua]bp01ub]ap0!, ~A6!

again neglecting higher-order derivatives. The final step fol-
lows from using Eqs.~A3!–~A5!.

~iii ! Using the definition off i
0 , Eq. ~15!, together with the

property of the lattice vectors Eq.~14!, the final term in curly
brackets in Eq.~A2! may be rewritten as

]a]g(
i
f i
0eiaeibeig5

c2

4
]a]g~nugdab1nubdag1nuadbg!

5
c2

4
@2]b]g~nug!1¹2nub# ~A7!

Substituting ~A5!–~A7! back into ~A2!, one obtains the
Navier-Stokes level equation~8!.

The viscous terms in the momentum equation~8! are not
Galilean invariant when density gradients are present. Some
of the non-Galilean invariant terms can be removed by add-
ing terms to the pressure tensor Eq.~6!:

(
i
f i
eqeiaeib5Pab1nuaub1v1~ub]an1ua]bn!

1v2ug]gn. ~A8!

The Navier-Stokes level equation then becomes

] t~nub!1]a~nuaub!52]bp01n]a~n]aub!1]b~ln]aua!

1]a@~n2v12z!ub]an#

1]b@~l2v2!ua]an#

1]a@~2z2v1!ua]bn#, ~A9!

wheren andl are defined in Eq.~9! andz52n2l.
Equation~A9! shows that it is not possible to choosev1

and v2 so that the momentum equation is fully Galilean

invariant. This occurs because the second moment off 0, Eq.
~6!, is symmetric with respect to interchange of its indices,
but the viscosity terms do not have this symmetry. To im-
prove the behavior when Galilean invariance is important a
sensible choice is

v152z, v25l. ~A10!

APPENDIX B

Here we present the steps involved in obtaining the equa-
tions of motion~32!–~34! from the lattice Boltzmann scheme
defined by Eqs.~23! and~24!. The derivation of the continu-
ity equation ~32! and the Navier-Stokes equation~33! fol-
lows that for the one-component fluid presented in Appendix
A.

To obtain the convection-diffusion equation~34! we start
from the equation analogous to~3! for the distribution func-
tions $gi% describing the density difference. Summing over
i and using~26! and ~28! gives

05] tDn1]a(
i
gi
0eia2~t2 1

2 !Dt

3H ] t
2Dn12]a] t(

i
gi
0eia1]a]b(

i
gi
0eiaeibJ

1O„~Dt !2…. ~B1!

It follows immediately from the first two terms on the right-
hand side of this equation that

] tDn52]a(
i
gi
0eia1O~Dt !. ~B2!

Using Eq.~B2! shows that the first, together with half of the
second, term in curly brackets in Eq.~B1! is of higher order
and can be neglected. To simplify the remainder of this equa-
tion we shall use

(
i
gi
0eia5Dnua5

Dn

n (
i
f i
0eia , ~B3!

where the second equality follows from Eq.~25!. This is
tantamount to assuming that each component is moving with
the mean fluid velocityuW . We consider each of the remaining
terms in~B1! in turn.

~i! Using Eq.~B3!

]a(
i
gi
0eia5]a~Dnua!. ~B4!

~ii ! Similarly,

]a] t(
i
gi
0eia5]a] tS Dn

n
nuaD . ~B5!

Differentiating each term in the product and replacing the
time derivatives by space derivatives using Eqs.~A3!, ~A4!,
and ~B2! this term gives a contribution
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2]aH ]b~Dnub!ua1~]bua!Dnub1
Dn

n
]bPbaJ ,

~B6!

where we have used the definition~29! to rewrite the second
moment off i

0 in terms of the pressure tensor.
~iii ! Using the definition~31!

]a]b(
i
gi
0eiaeib5]a]b$GDmdab1Dnuaub%. ~B7!

Substituting~B4!, ~B6!, and~B7! back into~B1! and noting
that the first two terms in~B6! cancel with the last term in
~B7! gives the convection-diffusion equation~34!.
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